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Abstract

Current trends in computational fluid dynamics (CFD) sees nu-
merical models developed primarily through parameter tuning,
which is in turn based on experiments and intuition. Whilst
such approaches have been traditionally useful, they are now
becoming difficult to manage due to their sheer complexity, and
specificity to particular flow problems. This in turn leads to
CFD solutions with increased computational complexity, and
little benefit in the overall accuracy or validity of the final solu-
tion. Moreover, these analytical methods do not make full use
of existing direct numerical simulation (DNS) datasets. There-
fore, in this paper an innovative method of improving a CFD
wall model through the use of classic big-data techniques will
be investigated. These techniques will make full use of current
DNS by looking for important flow features, and fitting optimal
regressors in order to validate and simplify current CFD wall
models. This will be achieved by using a Bayesian methodol-
ogy to correct a mixing length model, coupled with a regression
tree to infer solutions at various friction Reynolds numbers.

Introduction

Machine learning is a science which aims to train a computer
in order to find patterns in datasets. It has recently come to
the forefront of research interest due to the availability of large
datasets, as well as through increased computational capabili-
ties in the modern context. Traditional uses of machine learning
have been seen in fields as varied as categorising handwritten
digits [5], and as a game-model to play chess [1].

Although machine learning carries a lot of potential for various
research fields, it has not been used very widely in the compu-
tational fluid dynamics (CFD) area. An early example of its use
in the CFD context includes the work of Shang [13], where a
simple two-phase vapour problem was solved with an artificial
neural network, as well as Rajkumar and Bardina [11], where a
similar neural network was used to predict aerodynamic coeffi-
cients for wind tunnel data. Although these pieces of literature
have claimed positive results, they have failed to show an ability
to generalise such models to modern, and more complex prob-
lems.

Recently however, the CFD research groups at Stanford Uni-
versity, Sandia National Laboratories, and The University of
Michigan have been largely focused on trying to combine these
two fields in an efficient, and generalisable manner. Notable
examples of this work include the works of Ling et al. [6]
who have worked to encode physical invariance properties in
CFD problems as the input features into a random forest re-
gressor, Jaideep et al. [12] who have implemented a Bayesian
inversion scheme in order to try and estimate the joint posterior
probability of three k− ε model coefficients through Markov
chain Monte Carlo, Tracey et al. [14] who have trained a stan-
dard multi-layer perceptron model using a cost function based
on skin friction coefficient, and the work of Parish et al. [9],
where a Bayesian model inversion scheme was used to correct
the production term in the k− ε model.

This revitalisation of attempts to combine the two fields have no
doubt come about due to the explosion of interest in machine
learning in the modern context, due in large part to the variety
of problems machine learning has been able to solve. Due to
the clear potential that machine learning holds, this paper has
been developed in an effort to use classic machine learning al-
gorithms on direct numerical simulation (DNS) datasets to ex-
tract useful, CFD-specific information. In particular, a Bayesian
inversion method will be used in this paper, which shall work to
apply a corrective term to the mixing length model developed
by Nikuradse [8] for the case of 1D Reynolds averaged Navier
Stokes (RANS) channel flow. This method shall work by find-
ing the maximum a posteriori (MAP) solution, which will serve
as a corrective factor necessary to improve Nikuradse’s formu-
lation.

Methodology

In this section the methodology used to arrive at the corrective
formulations for Nikuradse’s mixing length formulation are ex-
plored. This will involve an analysis of the fluid equations, and
the set-up for a machine learning scheme based-on Bayesian
inverse modelling, and regression trees.

Mixing Length Model

The 1D Reynolds Averaged Navier Stokes (RANS) formula-
tion for fluid flow is outlined in equation 1, where U is the
mean flow velocity resulting from the RANS approximation, ρ

is fluid density, P is average pressure, and ν is kinematic vis-
cosity. This equation is solved computationally by first-order
forward marching in time, and second-order central difference
schemes for all space derivatives.
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Note that the pressure differential term, ∂P/∂x, has a derivative
in the x direction which renders equation 1 2D by definition.
However, it is possible to interpret this term as a scalar forcing
term H , which shall work to eliminate the x direction depen-
dency in equation 1, thus rendering it as 1D. This forcing term
is defined in equation 2, where τ is the wall shear stress, and δ

is the channel half height. This equation may be derived from a
simple force balance between the fluid body force, and the wall
shear stress, assuming steady state conditions.

H =
τ

δ
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In equation 1, there is a dependency on the term νT , which is
known as the the turbulent viscosity parameter. This term arises
when applying the Bousinesq hypothesis to the Reynolds stress
terms in the RANS equations [10]. However, this term is gen-
erally unknown and needs to be approximated in order to ensure
that there exists closure for equation 1. The approximation used
in this paper to model the νT parameter, and thus close equa-



tion 1, is that of the mixing length model. The mixing length
model is a coarse approximation for momentum transfer in wall
bounded flows. It is developed based on a naive assumption that
fluid elements will conserve their properties under some dis-
tance of characteristic length before mixing with the surround-
ing fluid and dissipating [10]. This approximation is shown in
equation 3.
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Simple mixing length models assume a function for `mix which
varies linearly with the viscous units, y+, from the channel wall,
where y+ = yuτ/ν, with uτ being friction velocity as defined
in [10]. However a more rigorous and experimentally deter-
mined version of the mixing length approximation, specific to
pipe flow, can be obtained by using Nikuradse’s formulation for
the mixing length parameter [8]. This is defined in equation 4.
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The main issue with equation 4 however, is its inability to reach
a zero value at the wall. This is necessary since the turbu-
lent viscosity parameter should be driven to zero at the wall
as the flow closest to the wall is dominated by viscous effects.
This condition can be incorporated into the mixing length equa-
tion by using a van Driest damping function. Such a function
scales with viscous units, y+, and decreases exponentially until
it reaches a zero value at the wall. This modification is made
clear in equation 5.
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The value for A+ is taken to be 26 according to Griffol and
Giralt [4]. Equation 5 represents the base equation which will
require a corrective factor applied. Currently this model works
quite well in the near wall section, due to the behaviour of the
damping function, however it is still unable to predict the flow
behaviour in the outer layer. The application of the corrective
factor is made specific in equation 6.
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The corrective factor is defined to be a parameter, β(y/δ),
which is a function of non-dimensional channel flow height.
The value for β is required to be found at every single node
point along the channel flow domain. The procedure for find-
ing β is found using a Bayesian inversion scheme, which seeks
the maximum a posterior (MAP) solution. This is clarified in
the following subsection. Once the MAP solution is found for a
few friction Reynolds numbers (using the definition of [10] for
friction Reynolds numbers), the β parameters at different fric-
tion Reynolds numbers are determined using a regression tree.
This is clarified in the following subsection.

Machine Learning

A Bayesian inversion scheme is fundamentally based on an ap-
plication of Bayes rule, defined in equation 7. Bayes rule is a
statement of conditional probability, which consists of a like-
lihood function, a prior probability, and an evidence term (de-
fined here as p(D| f (β)), p(β), and p(D) respectively). In equa-
tion 7 the function, f (β), refers to the application of the mixing

length correction term, β, in the full 1D RANS model previ-
ously defined in equation 1. The D variable refers to the DNS
dataset which was generated by Moser et al., which is freely
available online [7].

p(β|D) =
p(D| f (β))p(β)

p(D)
(7)

In equation 7 it is assumed that the prior probability, p(β), fol-
lows a Gaussian distribution, and that the likelihood function,
p(D| f (β)), is also Gaussian distributed. Although the defini-
tion of Gaussian distributions may seem restrictive, the optimi-
sation method used in this paper is general enough to allow for
a search of the maximum a posterior (MAP) solution to any dis-
tribution. The search for the MAP solution can be formulated
as an optimisation problem [2]. This is made clear in equation
8, where the symbol of an overbar denotes a mean quantity.
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The value for κγ was chosen to be 10−2 in order to ensure a well
regularised MAP solution. For a discussion on the similarities
behind the selection of a Gaussian prior and regularisation per-
formed in linear regression problems, the reader is referred to
[2]. In addition to this, the value for κδ is taken as 10−1 since
it is assumed that the DNS solution is known to be reasonably
accurate. Moreover, the value for the mean β prior is taken to
be unity, in order to ensure that optimisation begins without a
modified base model (since β is multiplied into the equation de-
fined in equation 6). This value is generally chosen to reflect an
initial belief in the value of β. Note that all β variables stated in
this paper are vectors with length equal to the number of nodes
in the domain.

Therefore the overall optimisation problem may be stated suc-
cinctly as in equation 11.

βMAP = argmin
β

(F(β)) (11)

In order to search for the MAP solution, an optimisation scheme
is carried out on equation 8. As mentioned before, this effec-
tively finds the mode of the Bayesian distribution, given the co-
variance, and mean β values defined in the prior and likelihood
functions. The optimisation scheme used in this paper is the
Nelder-Mead simplex method, which works to explore a surface
in a derivative-free manner. Such a method is robust against un-
defined function values, which is important in this context since



the perturbation of the mixing length model can lead to unrealis-
tic, and undefined solution instances. Although the formulation
in this paper only seeks the MAP solution, it is possible to ob-
tain the Gaussian uncertainty bounds about the MAP by using
methods which approximate the posterior distribution.

In addition to performing the Bayesian inversion scheme, a re-
gression tree is used to estimate the value of βMAP at different
friction Reynolds numbers. In particular, since the DNS dataset
from Moser et al. consists of high resolution mean flow solu-
tions at three different friction Reynolds numbers (see [7]), the
proposed method will learn the βMAP inversion solution at two
of these Reynolds numbers, and then predict what the solution
should be at the third friction Reynolds number. Regression
trees are used in this analysis, since they are incredibly fast to
train. Further information on regression trees may be seen in
the seminal work of Olshen et al [3].

Results

Through the Bayesian inversion scheme discussed in the pre-
vious section, it is possible to modify the base mixing length
model (equation 6) by finding the MAP solution for the β pa-
rameter. This results in the plots shown in figure 1. From this
figure, it can be seen that the although the Nikuradse formula-
tion is generally followed by the corrected solutions, at certain
sections along the Nikuradse base model curve, the corrective
curves deviate as necessary, to ensure that the DNS datasets are
reproducible. In particular, for the lower friction Reynolds num-
ber case, Nikuradse’s model appears to need additional damp-
ing near the wall. However as the friction Reynolds number
increases, the magnitude of this required damping appears to
decrease. Additional friction Reynolds DNS cases would be re-
quired to confirm that this observation is true as a general state-
ment.
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Figure 1: A comparison between the base model mixing length
formulation (defined in equation 5), and those learned from a
Bayesian inversion scheme using the DNS data of Moser et al.

Towards the end of the Bayesian inversion models in figure 1
(near a duct half height of unity), there is a collection of spu-
rious oscillations which normally implies that the obtained so-
lution is a high variance, overfit solution. Such solutions are
difficult to generalise to novel scenarios [2]. However, this
phenomenon is conjectured to be a result of the ∂U/∂y term in
the mixing length model, being driven towards a zero value at
the channel half height. That is, the turbulent viscosity param-
eter value near the duct half height can take almost any value
since it is being multiplied by a near zero value.

The application of these corrected mixing length functions ap-
plied to the 1D RANS flow equation (that is, applying the mix-
ing length curves of figure 1, to equation 1) results in figures 2
and 3. From these figures it can be seen that when the corrected
mixing length expression is used, the resulting mean channel
flow matches the DNS dataset significantly better than when the

base mixing length model is used. This can be seen in the por-
tions of the image which are closer to the channel half height,
where it can be seen that the base mixing length model misses
the DNS model, running almost parallel to it.
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Figure 2: Comparison netween Moser DNS data, and the base
and corrected models, at a friction Reynolds number of 180.
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Figure 3: Comparison netween Moser DNS data, and the base
and corrected models, at a friction Reynolds number of 592.

Once the Bayesian inverse models have been learned from the
DNS datasets (figure 1), the β parameter at various other fric-
tion Reynolds numbers can be determined by a regression tree
algorithm, learned over the inverse mixing length models in fig-
ure 1. During training of the tree, the minimum entropy splits
were determined by using a 10-fold cross validation scheme,
and the minimum number of branches per non-leaf node in the
tree was determined to be five by manual tuning. This ensures
that the tree is inexpensive to train and run, and aids in its ability
to generalise well to new scenarios. The ability for the regres-
sion tree model to predict a mixing length function at the fric-
tion Reynolds number of 395, using the mixing length curves in
figure 1 as the training dataset, is shown in figure 4.
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Figure 4: The mixing length curve predicted at a friction
Reynolds number of 395 by a regression tree.



As can be seen, this new curve at the friction Reynolds number
of 395, shares characteristics of the curves at the other friction
Reynolds numbers. There is an initial dip, underneath the base
solution, and then oscillatory motion towards the channel half
height. Naturally, it is difficult to quantify and comment on how
well this estimated mixing length curve works without, using it
in the mixing length model. Hence, the results of implemented
this learned curve is revealed in figure 5 (and its zoomed in ver-
sion, figure 6).
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Figure 5: Comparison betwen the mean flow solution obtained
with a predicted correction parameter, against the base mixing
length model, and the DNS dataset, at a friction Reynolds num-
ber of 395.

y+
102

U
+

16

18

20

Moser DNS Dataset Re: 395

Mixing Length with ML Prediction

Mixing Length Base Model

Figure 6: The zoomed-in version of figure 5, at the channel
outer layer.

Figure 5 makes clear that the mixing length function predicted
by the regression helps to ensure that the mean flow field
matches the DNS dataset. This is emphasised in the zoomed in
plot of figure 6, were it can be seen that the base mixing length
model curve, results in a mean flow field which does not match
the DNS solution, and in fact runs parallel to it for y+ values in
the channel outer layer. This trend has been seen previously in
figures 2, and 3.

Conclusion

This paper has explored a methodology of applying a Bayesian
inversion scheme to correct for deficiencies in Nikuradse’s 1D
mixing length equation. The inversion scheme was found to
work well, when compared against the DNS dataset of Moser et
al. In addition to this, it was proven possible to infer the value
of the corrective parameter at a different friction Reynolds num-
ber by using a simple, and efficient regression tree architecture.
Such a methodology is typical in the machine learning field and
is a primary reason of why such methods show great promise in
any field where datasets exist in the form of a ground truth.
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